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ABSTRACT

Mathematical models of the transmission of the AIDS virus can help us
better understand the spread of the AIDS epidemic and prepare for the future.
Model explorations can indicate which factors the epidemic is most sensitive
to and provide-guidance in designing interventions, educational programs
and social behavior studies. We explore the sensitivity of a transmission
model to different social mixing patterns. This model continuously
distributes a homosexual community according to sexual partner change
rates and can account for infectivity and conversion times that vary with
time since infection. An acceptance function determines which partners are
acceptable to an individual and defines the mixing between groups with
different partner change rates. We find that if people only select partners
with very similar behavior the epidemic grows much slower than if they are
not as discriminating. Therefore, understanding social mixing patterns may
be one of the most urgent tasks if we are to anticipate the future. We also find
that the epidemic is sensitive to variable infectivity and conversion times.

I. INTRODUCTION

Mathematical models for the spread of the Human Immunodeficiency
Virus (HIV) that causes AIDS are tools that have the potential to greatly
enhance our understanding of the AIDS epidemic. Models provide a
framework within which we can study the interactions of social and biological
mechanisms that influence the spread of the disease. They allow us to
ascertain the relative influence of various factors on the spread of the
epidemic, as well as the sensitivity to uncertainties in values.

As a first step in developing a reliable model, we have developed a
deterministic model for a homosexual community. This model distributes the
population according to the number of sexual partners per year and keeps
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track of time since infection for infecteds and time since diagnosis for AIDS
cases. Susceptible persons are infected through contacts with infected
persons, and infected persons develop clinical AIDS (such as Kaposi’s sarcoma
[KS] or opportunistic infections such as pneumocystis pneumonia [PCP)) at a
rate that depends on the length of time since HIV infection. AIDS patients
subsequently die at a rate that depends on the length of time since AIDS
developed. We assume that an infected person remains infected and
infectious for life and that a person maintains the same partner change rates
the whole time he remains in the population.

Hyman and Stanley (1988) explored a number of questions with
simplified versions of a model similar to the one presented here. They used a
model which neglected variations in partner change rates to examine the
impact of various plausible shapes for the infectivity as the time since
infection varies. These calculations pointed out the importance of measuring
the variability of the infectiousness during the disease. They also used a
model with no variations with time since infection to show that random
partner choice is dramatically different from a strong bias of like prefers like.
Other models have also shown that selective partner choice is a crucial
determinant of HIV spread (Jacquezet. al., in press, Stigum et al, 1988).

Because different mixing patterns can result in radically different
epidemics, much more must be known about the interactions between people
that lead to AIDS virus spread before it will be possible to accurately predict
the AIDS epidemic. The number of sexual partners that people have, the
partner-selection process, and the amount and type of contacts between
partners must be understood and correlated with sociological information
about the partners, such as how many partners your partners have.

In this paper, we further explore the sensitivity of the model to
assumptions about partner choice, again using a model which neglects
variations in parameters with time since infection. Then we add the
distribution of infecteds with time since infection and parameters that vary
with time since infection to see what the effects of these variations are.

In our analysis, we focus on the initial growth of the epidemic. If we are
to predict where this epidemic is going, we must fully understand its
transient dynamics, including the response to changes in the environment of
the epidemic. The epidemic will not reach an equilibrium endemic state for a
very long time, partly because of the long conversion times from infection to
AIDS, during which a person can transmit the virus and partly because
medical advances and changes in lifestyle will greatly modify the future of

the epidemic. The infectiousness and susceptibility of high-risk individuals

>



3

in the heterosexual community may be significantly reduced if programs are
initiated to quickly identify and treat other STDs. More people are being
tested for antibodies to HIV and counseled on the implications of the test
results. Treatments are being developed that will prolong the lives of infected
persons and perhaps lower their infectivity. A partially effective vaccine may
eventually be developed. Models can be used to investigate the effects of each
of these programs on the course of the epidemic only if they can capture the
transients of the epidemic. '

As models are developed they will provide a logical structure for the
diverse data that researchers are collecting. Also, new questions and insights
will arise to guide investigators in directing their research to add to the
general understanding of this epidemic.

II. EPIDEMIOLOGY OF AIDS

The HIV that causes AIDS is primarily transmitted through sexual
contact (man-woman, man-man), sharing of hypodermic needles, and
exposure to infected blood either perinatally or through blood transfusions.
HIV is not transmitted by nonsexual daily contacts, even though the virus
has been isolated from almost every body fluid (Fischl et al., 1987). The
infection risk to an individual depends both on the behavior of the individual
and on the prevalence of infection in the groups with which the individual has
sexual contacts or shares needles. This prevalence varies between regions
and age groups, as well as between behavioral risk groups. Multiple sexual
partners, sexual partners in a high-risk group or from a highly populated
area and sharing needles when using drugs all increase risk.

Surveys of risk behaviors in the homosexual communities demonstrate
that the variance in the number of sexual partners per year is large. (see
Fig.4.3 in Section IV.D). In this epidemic, it is significant that the people
with many partners tend to become infected first and then become carriers
who infect less-active people. This distribution can have a marked effect on
the course of the epidemic and on which risk group is currently at highest risk
of infection.

Risk from sexual activity depends on the probability of choosing an
infected partner as well as on the number and type of contacts with an
infected partner. The probability of choosing an infected partner depends not
only on how many new partners are chosen but also on the manner in which
those partners are chosen.



The risk group from which a person chooses partners for sex or needle-
sharing is an important social question about which little is known. No large-
scale studies specifically aimed at sexual behavior have been conducted in the
United States since the Kinsey Studies more than 35 years ago and the ’
sampling procedure for this study decreases its usefulness. The information
available from other countries is also poor. However, a number of other
studies, such as fertility studies, have included some questions on sexual
behavior or have studied specific groups. In addition, NICHD is designing
and will implement a nationwide survey of sexual behavior and needle-
sharing behavior specifically aimed at gathering information about the
transmission of the AIDS virus. Surveys of sexual behavior are being
conducted or planned in many countries around the world. For example, a
national, randomized survey of 10,000 people has recently been conducted in
Norway (Sundet, et al, 1988).

Most models for the transmission of venereal diseases (Hethcote and
Yorke, 1984; Anderson et al., 1986) have assumed that all partners are picked
at random from the pool of available partners. This assumption leads to the
proportionate-mixing assumption that the per year probability of someone
with i partners per year picking an infected partner with j partners per year
is i-j-Pj/PT, where Pjis the number of infected people with j partners per year
and P7 is the total number of partners picked per year. These models also
assume that the probability of infection per partner is the same. However, it
is clear that these assumptions are overly simplistic.

It seems reasonable to assume that there is a tendency for people with
fewer partners to have more contacts per partner than do people with many
partners. In most communities, there is also a bias of like toward like, so that
people with few partners tend to choose partners who also have few partners.
This observation led Hethcote and Yorke to use a combination of within-
group mixing and random mixing in their 2 risk-level gonhorhea model.
Adding these biases into the Anderson et al. model leads to substantially
different predictions from their random-mixing model with equal risks
(Hyman and Stanley, 1988).

In our model, we assume that an average probability of infection can be
assigned to each contact. This assumption may not be sufficiently accurate to
predict the spread of HIV and additional factors may need to be included in
the model (Peterman, et al., 1988). For example, the probability of infection
might depend strongly upon the strain of the virus or on the health of the

partners.



The infectiousness of a contact probably also depends on the type of
contact (man-man, woman-man, man-woman, anal-genital, oral-genital).
There is growing evidence that infectiousness may depend as well on other
cofactors such as venereal diseases and the use of protective devices (condoms,
nonoxynol-9). We need estimates for the prevalence of these cofactors, how
frequently protective devices are used, and how much behavior can be
influenced by factors such as education, knowledge that a partner or oneselfis
infected, and fear of infection. As public awareness increases and more people
know they are infected, we speculate that the resulting drift toward safer
sexual practices will slow the spread of the virus.

The African epidemic demonstrates that the virus can spread quickly
through a heterosexual network. Growing evidence suggests that this fast
heterosexual spread is partly due to a high prevalence of cofactors, such as
genital ulcers caused by chanchroids, which may greatly increase both
infectiousness and susceptability. In the developed world, such severe
cofactors are virtually nonexistent. However, other cofactors are present,
such as gonorrhea, syphilis, and herpes, that may increase transmission rates
less dramatically. Without data on infectiousness, with and without
cofactors, male-to-female and female-to-male, it is impossible to tell whether
or not a self-sustaining heterosexual epidemic will occur in the United States,
even though the current heterosexual AIDS cases are primarily due to
contacts with homosexuals and IV drug users. A slowly growing heterosexual
epidemic could be masked by cases due to contacts with these groups. It is
unlikely that models can distinguish between these two possibilities without
estimates of transmission probabilities from partner studies (e.g., Fischl et
al., 1987; Padian et al., 1987).

The accumulated number of AIDS cases diagnosed in the United States
as reported to CDC, A(t), is not growing exponentially but is well
approximated by

A() = 174.60 - 1981.2)%% + 340 £ 2% (2.1)

for times t = 1982.5. This polynomial growth is evident in nearly every CDC-
defined category including risk behavior, age, region of the country, and
ethnic group (Hyman et al., in preparation). The AIDS cases approximated
by Eq. (2.1) are based on the pre-June 1987 AIDS definition and do not
include dementia and wasting syndrome.

If C(v) is the probability that a person infected with HIV at time t-t has
developed AIDS by time t, and if I'(t) is the number of people infected per year
with HIV, then the cumulative AIDS cases reported to CDC satisfies the
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where p is the fraction of infected individuals eventually reported to CDC as
AIDS cases. p is the product of the probability that an infection will result in
a pre-1987.5 CDC-defined AIDS case (which excludes dementia and slim
disease) times the probability it will be reported to CDC. The probability that
an AIDS case will be reported to CDC is the product of the probabilities that it
will be diagnosed and, once diagnosed, that it will then be reported. Using
estimates of C'(1), the probability density function for conversion to AIDS, we
can solve Eq. (2.2) for I'(t).

As the width of C'(t) approaches zero (that is, a delta-function), then the
solution of Eq. (2.2) approaches

I0=p At +1,) . (2.3)

This estimate can be used as a rough approximation for 1(t), even for fairly
wide distributions C'(z) (see Hyman and Stanley, 1988). This approximation
can be used to estimate the number of infected individuals in January 1988.
For example, if we assume that 80% of the infected individuals develop CDC-
defined AIDS and that 80% of these are reported to the CDC, thenp = 0.64.1f
1A = 9 years and the number of AIDS cases in 1997 (= 1988 + 14) is 85% of
the extrapolated cubic approximation (4.2), then the current cumulated
number of infected individuals is

(2.4)

1(1988) = { %%% [174.6(1988.0 +9 -1981.2)° + 340 | = 915,000 .
We remark that if only 40% of the infected individuals develop CDC-defined
AIDS (as was thought a few years ago) then, even though the predicted AIDS
cases are the same, this approximation estimates that there would be
1,830,000 people infected with HIV in the United States.

The cubic polynomial growth can be explained by a wave of infection
progressing from populations with high-risk behavior into populations with



lower-risk behavior. For example, if individuals with risk behavior r
(proportional to the number of sexual partners or needles shared) are infected
through interactions with people of similar behavior and if the population is
distributed as a decreasing function of risk behavior [e.g., N(r) = Ng(1+ar)-4,
where N(r) is the number of individual with risk r], then the highest-risk
population is quickly infected, giving rise to an initial transient exponential
growth. This growth quickly becomes polynomial as the saturation wave of
infection moves into lower-risk (but still high-risk) behavior and finally slows
to an exp(1/t) growth rate (See Sec. V). The polynomial growth is analyzed in
more detail in Colgate et al. (1988).

III. MODEL DESCRIPTION

A complete model of the spread of the AIDS virusin a sexually active and
IV-drug-using community must account for the complicated interactions
between people. However, one must begin by understanding the behavior of
simple models before going on to explore more complex ones. In risk-based
models, such as the one we use here, the population is stratified according to
the amount of risk individuals incur. These models do not model the risk (or
protection) of longer-term relations as well as the partnership models of Dietz
(1987 and 1988) in which individuals are continually forming and breaking
partnerships and the infection is passed only when one individual in the
partnership is infected and the other is not. However, in the partnership
models it is difficult to account for the wide variations in risk behavior that
occur. Because we are primarily concerned with modeling HIV spread in
high-risk populations, we use the risk-based approach and account for
partnership duration by allowing a variable number of contacts in each
partnership.

For modeling purposes, we divide the at-risk community into uninfected
susceptibles, infecteds without AIDS, and diagnosed AIDS cases. To model
variations in risk behavior within this community, we suppose that the
population can be distributed according to their numbers of new sexual
partners per year. People mature into a fixed risk group and leave it only
upon becoming sexually inactive (and ceasing to share needles). Before the
introduction of the AIDS virus, there was a balance between a constant
maturation and migration rate into each risk group in the community and a
constant rate per individual of retirement or death out of it; these processes
continue in the presence of AIDS. Susceptibles become infected through
sexual contacts or IV needle-sharing with infected partners. Infected



individuals eventually develop AIDS, becoming sexually (or needle-sharing)
inactive, and die at an accelerated rate

We further stratify the non-AIDS-infecteds and AIDS cases according to
time since infection or AIDS. This allows us to model both a variable
infectivity and the distributions of times from infection to AIDS and of times
from AIDS to death. Defining
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time,
time since becoming infected or developing AIDS
number of new sexual partners per year,

distribution of susceptibles according to the number of
partners per year,

distribution of infecteds according to the number of partners
per year and the time since infection,

distribution of AIDS cases according to time since AIDS
began,

probability of infection from a contact with a person infected
1 years ago,

rate at which infecteds develop AIDS at a time 1 after
infection, '

death rate at time 1 after AIDS starts,

accumulated number of AIDS cases,

number of susceptible and infected individuals without
AIDS,

death rate of individuals without AIDS,

total number of contacts in a partnership between people
with r and r’ partners per year, and

density of people with r new partners per year before the
AIDS virus was introduced.

Note that S(t,r) and Se(r) have the units people-time/partners and I(t,tT,r)
has the units people/partners. The resulting model is
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This model portrays a community in which people mature or migrate
into the susceptible community with risk r at a constant rate pSq(r). People
without AIDS die (or become inactive) at a constant rate, with p-! their
average life expectancy. Infection occurs through sexual contact with an
infected partner.

There may be a wide variation in infectiousness as the disease
progresses. A constant rate of progressing to AIDS would impose an
exponentially decaying distribution of times to AIDS. However, cohort
studies have found that the probability of getting AIDS increases with time
since infection for at least the first 7 years (see Section IV.A).

The infectivity, i(1), is an average over all individuals infected at time 1
and is discussed in more detail in Section IV.B.

We must still define A(t,r). We discuss below some possible choices:
random partner choice, a bias of people towards partners like themselves, and
a combination of the two.



10

Defining Att,r)

We assume that the average r-r' partnership is sufficiently short and
infectivity is sufficiently low that the probability that a person has already
become infected in the partnership issmall, i.e., ‘

maxli(t)c(r,r') <1 .

Furthermore, the epidemic cannot grow so fast that the chance that a partner
is infected becomes significantly different during the course of the
partnership from an unmatched person from the same risk group.

Under these assumptions, A(t,r) can be approximated by

Agn=r ] Fr,r k,r,dr
0 (3.2)

du .

k) = clrr) r (0 )
)= clrnr i(x

0 N(t,r)
Here k(t,r,r') is the probability of being infected by a partner of risk r'.
F(t,r,r') is the fraction of partners of people with risk r that have risk r’. For
random partner choice, this is

F ) = PNEAL<INO>T" (3.3)
random

If we assume that partners are chosen at random from the entire
population, then A(t,r) is given by

c(r,r’)r‘l i I(t,t,Ndedr . (3.4)
0

r
A t,r) = ~—————
“n <rN({)> ]0

random

A version of this model with no differences in partnership durations and no
variability in infectiousness (c(r,r') and i(t) constant) was first proposed by
Anderson et al. (1986).

The A(t,r) given by Eq. (3.4) does not account for the fact that people do not
choose partners at random from all groups but instead prefer partners of a
certain type and choose them when available. Ideally, the partner selection
in any model should be based on sociological data. This question will be
discussed in more detail in a later report; as a first step towards addressing
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this question we present below a model which allows a wide range of partner
choices to be specified.

To account for partnership biasing, F(r,r") is determined by the fraction of
partnerships from r' that are both available and acceptable. Thus, if partners
of risk r' are accepted by people with risk r with a frequency f(r,r') then the
fraction of partnerships available and acceptable to a person of risk r is

® -]
F(r,P) = fir, r')rwu,f)l I PR PONG P (3.5)
0

There are, however, constraints on F(t,r,r'): the total rate that r-r'
partnerships form, rN(t,r)F(t,r,r'), must be equal to the total rate that r'-r
partnerships form. We would also like to ensure that a person fromr hasr
partners/year. There is no unique way to do this. However, if we let the
person from the lower risk group always be the one which decides on the
acceptability of the partnership, then

g N,
(1 - J F(,rx)dx)e —_/_(_r,_r")__(_,_)___ s forr<r,
0 @®
xfir,x) N(t,x)d'x
F(t,r,r) = r
3.6
N ( )
F,r,n ) forr > 1r'
rN(,n

is a reasonable choice. f(r,r') = 1 gives random mixing (3.4). Substituting
Eq. (3.6) into Eq. (3.2) defines A(t,r).

The system in Eq. (3.1) with different choices of A(t,r) allows the
implications of a wide variety of partner-selection mechanisms to be
investigated.

If mixing occurred only with people from the same risk group, then the
virus could not spread between groups, A(t,r) would be equal to k(t,r,r), and
the system in Eq. (3.1) would describe separate epidemics for each value of r.
However, this perfect isolation is unrealistic. The mixing between people of
similar, but not identical, risk behavior leads to diffusion of the virus from
one group to another. Using

3.7
fir,”) = exp [ = (1/2edr—~ r')2/(r+a)2l

fr,r") = exp [-(1/2¢) (r-r')%(r+a)?] to define F and letting e -0 in Eq. 3.2
gives
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AA = r| k) + S S— i((x +a)? xN(l,x)ak(t’r’x) )} atx=r (3.8)
’ ™ 2(r+a)r N(t,r) ox ax
to Ol(e).

With this A, Eq. (3.1) becomes a partial differential equation. Although
this model is only an approximation to the full system, it shows that the
complex integro-differential equations of (8.1), (3.2), and (3.6) model a
diffusive process. Exploring this model (and other limiting models) can help
us understand much of what is occurring in the numerical simulations of the
full model.

Even within the male homosexual and the IV needle-sharing
communities, behavior patterns are not this simple. Depending on the
community of interest, there may be a very different mixing pattern from the
ones described here. An individual’s behavior will change over time, and
people with many partners one year may have only a few the next, or vice
versa. Social groups within which mixing is strong, and between which it is
weak, may cause low-activity people in one group to be infected before high-
activity people in another group.

The social/nonsocial mixing behaviors modeled by Sattenspiel (1987) and
Sattenspiel and Simon (1988) may also play an important role in the spread of
this disease. Models with a variety of mixing assumptions need to be
developed and compared, both with each other and with behavioral and

serological studies, to ascertain what complexities are necessary for modeling
HIV spread.

IV. MODEL PARAMETERS

The models discussed in the previous section contain a number of
parameters that must be estimated in order to make calculations. Some of
these parameters can be estimated fairly well (g, y, or 8(z)), but for most of
them only partial information is known. It is important to explore the effects
of parameter changes, within plausible ranges, on the solution of these
models.

A. RATE OF DEVELOPING AIDS

HIV causes a slow decline in the immune system. This picture of
progressive immune-system decline indicates that most infected individuals
eventually die from HIV-induced illness and that the probability that an
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individual will develop AIDS depends on how long he has been infected. The
time from infection to diagnosis of AIDS is extremely variable. HIV-infected
adults have developed AIDS in less than 2 years and some have remained
well for more than 9 years. The distribution of times between infection and
clinical AIDS is only partially known because of the long times involved. In
studies of patients for whom an estimate of date of infection can be made
(such as hemophiliacs), the percentages developing AIDS in any given year
after infection are either still increasing or are remaining roughly constant,
which leads to an estimate of an average time to AIDS of at least 8 years.
We have chosen to use the Weibull distribution of Medley et al. (1987))

C'() = pgfvP~ le—m)p , 4.1)
with p = 2.4, q = 0.11 for the times from infection to AIDS, primarily because
it agrees well with the first 7 years of estimates from the portion of the San
Francisco Hepatitis B cohort for whom the date of infection can be estimated
(George Lemp, personal communication). This distribution, shown in
Fig. 4.1, has a maximum at 7.5 years, a median value of 8 years and a mean of
8.9 years. This function is chosen such that all infected persons eventually
get AIDS. If less than 100% of the infected people get AIDS, the tail of the
distribution should be reduced, but the first 7 years should be left unchanged.
The rate y(t) of getting AIDS at time t after infection is the conditional
probability density given that the person has not yet developed AIDS

1

y( =C'(ull -con !, cw= ] C'(x)dv, . (4.2)
0
y(t) is .shown in Fig. 4.1 for the Weibull of Eq. (4.1).

B. INFECTIVITY

The infectivity may be related to the amount of free virus in the
circulatory system of an infected individual. Studies indicate that the
amount of free virus goes up in the first few weeks after infection (Francis
et al., 1984; Sulahuddin et al., 1984) and then goes down as antibody response
occurs, remaining at very low levels for years. As the immune system
collapses in the year or so before AIDS develops, viral counts return to high
levels (Lange et al., 1986).
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Fig. 4.1. Conversion from infection to AIDS as given by Eg (4.1) with
p=24,q= 0.11. Here C(1) is the probability of developing AIDS by t years
after infection, C'(x) is the probability density of developing AIDS at t years
after infection, and y(v) is the conditional probability density of first
developing AIDS at time 1.

Information on average per contact infectivity is only good enough to
make estimates on its order of magnitude. Padian et al. (1987) have used
partner studies to estimate an average per contact infectivity from man to
woman of 0.001 when no other venereal diseases are present. Grant et al.
(1987) have used seroprevalence estimates to estimate a per partner
infectivity for man-to-man transmission (with receptive and insertive
intercourse) of ip = 0.10, but they had no information on numbers of contacts
between partners. They also make some estimates for per contact infectivity
assuming a fixed number of contacts per month and get a range of 0.004 for 8
contacts to 0.03 for 1 contact per month. Only a study with information about
the number of contacts between partners and the clinical status of the partner
can give actual numbers, but these data indicate that the average infectivity
of a sexual contact probably lies between 0.001 and 0.03.

We assumed above that the infectiousness of a single contact, i(z), is the
average for all infected adults. The infectiousness of any single individual,
i,(x), may have occasional ups and downs as health varies, and these
variations will be smoothed out when averages are taken. More than this,
there is a wide spread in the rate at which immune systems deteriorate. We
define i;(1) as a function i;(t,ta), which gives the immune response in terms of
the individual’s time to AIDS, ta, after infection. The time to AIDS is given
by the probability distribution C' (ta). Comparison of a model with 1a explicit
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and our model without 15 shows that the average infectiousness is
oy . . -1
U = [1 l‘.(t, t, )C (ta)dta(l S04 1 7) N (4.3)

For the (t,r) model calculations of the next section, we have taken
i{(t,1,) = i*(t/r,). We use a piecewise linear infectivity, i*(1/1,), as shown in
Fig.4.2. The solid line in Fig. 4.2 shows the effect of applying Eq. (4.3) to the
Weibull of Fig. (4.1) and the i*(t/ta) shown as i;(1,8).
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Fig. 4.2 The infectivity of an average person infected at time t1is a smeared
version of the infectivity of an individual. We have postulated an individual
infectivity ij(1,ta) = i*(t/ta). The dotted line shows ij(t,ta) for ta = 8 years,
and the solid line shows the average infectivity , i(t), given by Eq. (4.3) with
C'(x)asin Fig4.1.

C. DEATHRATES

The death rates p and 8(t) are the model parameters for which the best
data exist. If we take p to represent the rate of attrition out of the at-risk
community, a p-1 of 30-50 years is reasonable. In our calculations, we use
p = 0.02.

The probability of death once AIDS symptoms appear can be estimated
from CDC mortality data, where deaths are recorded according to diagnosis
date. The rate of death is high at first and gradually decreases. An
exponentially decreasing probability density for death as a function of time
since AIDS, which gives a constant death rate, fits adequately. A slightly
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better fit is found by taking the density function to be

D' = dexpl—du1+d @71, (4.4)

where t is the time since AIDS symptoms appear and D, = 1 is chosen to
normalize the area to 1 at © = 20 years. Now we get the rate of death to be
decreasing with

T

Sw=D'WI - pwl~', DW= ] D'(td)dld. _ (4.5)
0

d, = 0.075andd; = 0.05 give reasonably good fits to the CDC data, with 48%
dead in 1 year and 90% dead about 5 years later. A recent follow-up of AIDS
cases found that deaths were severely under reported (Hardy et al., 1987).
Thus, this distribution might underestimate the true death rate due to AIDS.
This underestimate will be somewhat less severe than it might have been
because of the widespread use of AZT.

D. DISTRIBUTION OF RISKS

Sexual activity data from studies of homosexual men show that there is
an enormous variation between individuals in the numbers of partners and
the amount and type of contacts. Participants in the Multicenter AIDS
Cohort Study (MACS), who were questioned between April 1984 and March
1985, reported between 1 and 500 male partners in the previous 6 months,
with a mean of between 5 and 10 (Kingsley et al., 1987). The San Francisco
Men’s Health Study (Winklestein et al., 1987) and homosexual men surveyed
in London in 1984 and 1986 show a similar amount of variation (data from T.
McManus and Carne and Weller reported in May and Anderson, 1987). A
simple function that approximates most of the data is (n+ 1)(np)n+ (np+r)°
with n between 3 and 4, and n matched to the data. Fig. 4.3 shows this data
from Carne and Weller, plus the fit with n = 4. For the calculations of
Section V, we take n = 4 and a mean of 24 partners/year.

Information on the number of contacts between different types of
partners (long term, casual, prostitutes) is scarce, even for these homosexual
cohorts. This critical information is beginning to be collected (Joseph et al.,
1987). Because transmissibility through different types of contacts may be
different, the frequency of each type of contact needs to be quantified.
Without such knowledge, the best that we can do is to make some reasonable
assumptions and explore various possibilities.
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Fig.4.3. The distribution of homosexual men attending STD clinics in
London, according to the number of partners per month from Carne and
Weller . The dotted line shows the inverse quartic with the same mean as the
data. (Data reported in May and Anderson, 1987).

The assumptions that we use are that people with large numbers of
partners have one contact with each partner and that people have more
contacts with each partner when both partners have fewer partners. For the

calculations in this paper we use the contact function c(r,r’) =
1+ (c,-1expl-cy(r+r)] withe, = 11 andc, = 0.1.

E. INITIAL CONDITIONS

In order to solve system 3.1, we need to specify initial conditions for
S(0,r), I(0,t,r) and A(0,1,r). For these conditions to be consistent with the
epidemic we must define infections and AIDS cases as a function of t
according to what they were at some given time. '

For the calculations with no t dependence, we take the initial infected
population to be a Gaussian distribution of 1000 people, with height 100,
centered at a risk behavior of 175 partners per year. For the (z,r) model, the
initial infected population should be consistent with the past history of the
epidemic, as well as being consistent with the risk-model calculations. For
this to hold, we define I(0,t,r) to be such that
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J 100,3,ndr =(1=C@)Tt—1) .
0

where I'(t) is defined by Eq. (2.3): I'(t) = a(t-to)2. The integral of I(0,1,r) overt
is defined to have the same distribution aboutr = 175 partners per year as in
the risk model.

V. SAMPLE CALCULATIONS

In this section we examine some of the qualitative features of the
epidemic by comparing the predicted spread of HIV and AIDS cases as we
vary the parameters. We focus on early growth because it is important to
understand how the epidemic moves into new populations and which
interactions are important in its transient dynamics. For the risk-based
models, we examine the number of infecteds versus risk and show that
different mixing assumptions result in substantial differences in predictions
for the growth of the epidemic.

The solutions were integrated in time with an explicit Adams-Bashford-
Moulton method to an accuracy of 106 per unit time. The t-derivatives were
calculated with fourth-order finite differences and the solution was
approximated on a uniform grid of between 61 and 201 mesh points in both t
and r. The grid spacing and error tolerance were varied to check convergence
of the solutions. We emphasize that these models are too simplistic to give
accurate predictions of the AIDS epidemic and that the following calculations
are meant only to illustrate the behavior of the models.

A. RISK-BASED CALCULATIONS

For our first set of calculations, we took i(t), y(1), and 8(v) to be their
average values (i(t) = 0.025, y(v) = 0.133 years?, and 8(v) = 0.5 years'!).
This allows us to reduce Egs.3.1 and obtain a model where the non-AIDS
infecteds and the AIDS cases are distributed only according to partner change
rates and not according to t. We use this collapsed model to examine the
sensitivity of the model to different choices of the acceptance functions, f(r,r").

The initial susceptible population is distributed in risk as an inverse
quartic S(0,r) = So 3(2m)3(2m +r)4, with total population [ S(0,r)dr =
10 million, mean m = [ rS(0,r)dr (10 million)! = 24 partners/year. There is
migration into all risk categories with migration rate equal to the natural
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death rate, p = 0.02 times So(r) = S(0,r). Initially, there is a Gaussian
distribution of 0.001 million infected individuals, centered at risk r = 175,
with height 0.0001 million - years/partner, and no AIDS cases.

First we compare acceptance functions where the width of the mixing
regions are similar and increases linearly with r. These functions differ in
the amount of mixing between dissimilar group. For this purpose, we use the
Gaussian shown in Eq. (3.7) and

1+ (6.1

r-r)" 1!
- |

elr + rm)"

withn = 2 and n = 4. Here rm = 10 partners and ¢ is chosen so the width of
the acceptance function is approximately the same for each of the three
functions [f(r,r+24) ~ 0.1 at r = 75 partners/year)l. These three functions
are shown in Fig. 5.1.

1.0

0.5

Acceptance Function, {(r,r')

0.0

Risk (partners/year),

Fig. 5.1a. The inverse quartic function f(r,r") of Eq. (5.1) withn = 4, rm=10
partners/year and ¢ = 0.00065,is shown forr = 25,75 and 150 partners/year.

These acceptance functions are based on the assumption that people
preferentially mix with those similar to themselves and that more active
people are less picky than the less active. Because the degree of social mixing
is difficult to measure, unless the model solutions are fairly insensitive to the
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choice of the mixing function this modeling approach can not be used reliably
for quantitative predictions.

In Fig. 5.2, we show the results of the calculation for the inverse quartic
acceptance function of Fig. 5.1a. Note that the epidemic grows in a
nonexponential, roughly polynomial, fashion. This growth is caused by an
infection wave that moves from highest risk to lower risk people, saturating
each group as it moves. There are several phases to this growth: a short (1 or
2 year) fast “exponential” phase during which the highest risk groups are
saturated; this is followed by “polynomial” growth period which lasts about
10 years as the wave moves downward to the lowest risk groups; a period after
the epidemic wave has reached the lower risk groups and they are not yet
saturated; finally, even the lowest risk groups reach saturation and drop to
their equilibrium values.
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Fig. 5.2a. The change in the total populations over time for the model (3.1)
;\‘rhen there is no dependence on time since infection and f(r,r') is defined in
ig.5.1a.

In Fig. 5.3 we compare this calculation to those with the Gaussian and
the inverse quadratic functions of Figs. 5.1b and 5.1c. We see that there is
very little difference between the behavior of the exponential function and the
inverse quartic. In both cases, the number infected have two inflection points
before reaching a maximum and agree quantitatively. However, the
quadratic function gives a faster epidemic that is more uniform in behavior
and reaches low-risk groups earlier. This occurs because, although the local
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Fig. 5:2b. An infection wave moves from high risk to low risk. Shown is the
infection profile at 3, 6, ..., 18 years for the calculation of Fig 5.2a.

mixing has a similar width, the long tails of the quadratic allow some mixing
between high and low risk people. Thus, we see that the epidemic is fairly
sensitive to even a small amount of nonself selective mixing.

To determine the sensitivity of the epidemic to the width of the mixing
region, we compared the results from the inverse quartic of Figs. 5.1 and 5.2
with those for the same function when it is twice (¢ = 0.01) and four times
(e = 0.17) as wide. In Fig. 5.4a we see that the initial epidemic grows faster
the wider the acceptance function is. That is, the less discriminating people
are in selecting partners similar to themselves, the faster the epidemic grows
and spreads into the lower risk populations. The wave of infection for the
wider acceptance function (e = 0.01) is not as sharp as in Fig.5.2. When
¢ = 0.17, Fig. 5.4b, the wave almost disappears and the infection quickly
begins growing in the lower risk groups, as in the random mixing model
(f(r,r') = 1) (Hyman and Stanley, 1988). 3

This epidemic, with ¢ = 0.17, is only slightly faster than for the
quadratic of Fig. 5.1c, showing that the width of local mixing is not as
important to know as the amount of mixing between very dissimilar groups.
Because most of the susceptibles have low risk behavior (small r), the less
selective partner choice is assumed to be, the more the partners of high-risk
behavior people have low risk and the more the high-risk group actsas a pool
of infection for the lower-risk group, causing the lower-risk populations to
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Fig. 5.3a. The total number infected and total AIDS cases for the three
functions in Fig. 5.1. The letters a, b, c correspond to the acceptance functions
in those of the Figures 5.1a, b, c. The small amount of mixing between low
and high risk people allowed by the inverse quadratic (c) gives a faster
epidemic than the inverse quartic (a) or the exponential (b), which are very

similar.
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Fig. 5.3b. The distribution of infection according to risk at 10 years for the
three functions of Fig. 5.1. The infection has already reached low risk groups

for the inverse quartic.
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cases are shown for the calculation o Fig. 5.2 with the inverse quartic of Fig.
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Fxg. 5.4b. When the width of the acceptance function is quadrupled, the
infection wave moves quickly into the lower-risk population. The distribution
of infecteds versus risk is shown for ¢ = 0.17 of I'ig. 5.4a at 3, 6, ..., 18 years.
As the acceptance function becomes wider, the behavior approaches that of
random mixing, with the wave-front behavior disappearing and there are
more infected individuals with low-risk behavior than with high-risk

behavior early in the epidemic.
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become infected more quickly. The early AIDS cases had, on average, a large
number of partners, indicating that mixing was probably fairly self-selective.

B. (z,r) MODEL

We finish by calculating the solution of the full model in Eq. (3.1), using
the same f(r,r') in A(t,r) as for Fig. 5.2, the parameter values described in
Section IV and the initial conditions

J80,ndr=10,

[I0,u dr = 523.8@ — 02 - C) X107, st ,and (5.2)

AQO,n=0.

The units are millions of people and years. The scaler parameters used were
p = 0.02 year! and 1o = 1.8 years. Equations (4.2) and (4.5) were used for the
rates of progression from infected to AIDS and from AIDS to death. The
individual infectivity i;(t,ta) = i*(t/1a) in Eq. (4.3) was a piecewise linear
approximation L[(t1,i1), (12,i2)...] shown as the dotted line in Fig. 4.2, which
for 14 = 8 years connects the (t,i) data points

i (uy) = LI0,0), (0.1,0),0.4,0.1), (0.7,0.005), (5.0,0.005),8.0,0.)] .  (5.3)

This distribution and the resulting i(1) are shown in Fig. 4.2. Note that each
individual has an average per contact infectivity of 0.024. The initial
conditions for f1(0,1,r)dt and [A(0,t,r)dt were the same as for the risk-based
calculations. These functions were then combined using the methodology
described in Sec. IV.E to define I(0,t,r) and A(0,1,r).

The solution in Fig. 5.5a illustrates how the susceptibles steadily decline
to near-equilibrium values after 40 years. Initial growth of infecteds and
AIDS cases has a somewhat different shape and the infection wave in
Fig. 5.5b somewhat faster than the one in Fig. 5.2 where the average
infectivity of 0.025 was used.

In Fig. 5.5d we compare the epidemic from the t-independent calculation
of Fig. 5.2 and several calculations with t-dependence. These calculations,
using the highly self-selective mixing of Fig. 5.1a, show that, at least for this
special case, with a constant conversion rate and variable infectivity the
epidemic is nearly identical to the t-independent epidemic. With a constant
infectivity and variable conversion rate it is significantly faster, and with
both variable it is even faster. More study of the full model’s sensitivites need
to be undertaken. ‘
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Fig. 5.5b. The infected population forms a wave that sweeps from high-risk

behavior groups into lower-risk groups. The distribution of infecteds is shown
every 3 years, at the times marked on the curves.
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This confirms that an initial infectious period plus a 2-year delay in
developing AIDS can greatly speed the epidemic. Ina model where all people
have the same risk behavior, we can dramatically change the rate at which
the susceptible population is infected by varying the infectivity profile, even
when the average infectiousness of an individual, Joli*(x)dx, is the same
(Hyman and Stanley, 1988). The shape of the initial peak in infectivity is
most important because more people are infected recently (low 1) than 5-7
years ago (high 1).

In Fig. 5.5¢ we show the distribution of the infected population as a
function of time since infection. Note that there is some indication here that
we may not have chosen optimal initial conditions. These distributions could
be applied to make predictions of how many people will be in various stages of
the disease at any given time. This is an additional benefit in including the
time since infection as a variable in the model.

0.8 T T T S e m e s e e

Number Infected x104 1 years per year

20 25
Time Since infection (years), 1

Fig. 5.5¢c. The distribution of infecteds I(t,t) = JI(t,1,r)dr are shown at times 3,
6, ..., 18 years, indicated on the curves.
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Fig. 5.5d. The infected population and AIDS cases from (a) Fig. 5.2b with no
1-dependence and i = 0.0244 (b) Fig. 5.5a with t-dependence; (c) t-dependence
with i(t) = 0.0244; and (d) t-dependence with y(1) = 0.1333 and i(v) as in (b).
Having an initial viremic peak and no one developing AIDS for 2 years after
infection greatly speeds the epidemic.

VI. SUMMARY

Major advances are required before either an effective antiviral therapy
or an effective vaccine is developed and becomes widely available. Thus, we
have to prepare for a long battle against the spread of the AIDS epidemic.

Mathematical models of the transmission of HIV can help researchers
develop an understanding of the complex interactions that lead to the
epidemic’s spread. The complexity results from the long asymptomatic period
after infection with the human immunodeficiency virus (HIV) that causes
AIDS, the social behavior of human populations, and changes in the
environment of viral transmission. These models can show how the early
infection of high-risk groups, behavioral changes, and future medical
advances such as treatments and vaccines will affect the future course of this
epidemic. The effects will be highly nonlinear functions of the parameter
values and at times may even lead to changes that are counter to both
intuition and simple extrapolated predictions. The mathematical model
predictions of these counterintuitive mechanisms may greatly improve our
understanding of the observations.
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In our computer models, the amount of sexual contact and needle-
sharing between high-activity and lower-activity individuals determines
both who gets infected and the speed with which the epidemic progresses. If
there is little mixing between these groups, then the individuals in high-risk
groups are nearly all infected before the infection moves into lower-risk
groups. However, if mixing is large, many more lower-risk individuals will
be infected in the early stages of the epidemic. The epidemic moves much
faster when mixing is large because there are many more low-risk
individuals than high-risk ones. In a model where partners are chosen with
little regard for their partner-change rate, the total number of infected low-
risk individuals quickly exceeds the number of infected high-risk individuals.
This result is contrary to experience (Darrow et al., 1987; Goedert et al., 1984;
Auerbach et al,, 1984) and reflects the urgent need to collect and analyze the
information on mixing patterns to estimate critical model parameters.

This sensitivity raises an obvious question: it is possible to measure
mixing sufficiently accurately to predict the spread of the epidemic? We have
seen that the model is not very sensitive to the shape of the mixing function,
but it is very sensitive to its width. Thus, although we do not need to know
whether mixing decreases in a Gaussian or a polynomial fashion as people
become more dissimilar, we may need to estimate within better than a factor
of two the range from which partners are primarily chosen. Even with the
best possible data this may be a difficult task.

We can choose parameters in our preferential-mixing model that ensure
that AIDS cases in the numerical simulations match the past history in the
United States. Many other reasonable models can also quantitatively fit
these cases but may predict a very different future. Quantitatively matching
past AIDS cases is not, therefore, sufficient to distinguish between models.
Qualitative discrepancies between AIDS cases and the model need to be
explained; for example, models with initial exponential growth do not fit the
U.S. AIDS case data. Correlated residuals between the fitted model
predictions and AIDS data may give important clues to additional
mechanisms that models must incorporate. Data from seroprevalence and

cohort studies should also be consistent with the model’s predictions. We plan
to test the hypothesis that most mixing was between men of similar risk
behavior by analyzing San Francisco data on behavior versus infection before
behavior changes became widespread.

Although it is unlikely that any model will provide accurate long-term
predictions of the numbers of AIDS cases, transmission models could
eventually allow investigators to answer many questions. For example, one
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can assume increased condom use by people in a targeted age group and
region and then determine how much that increased use will slow the local
course of the epidemic. This predictive ability would then help authorities
decide if it is more effective to encourage condom use in that group than to use
another strategy, such as stressing the importance of having fewer partners
or reducing the incidence of other sexually transmitted diseases, to lower the
probability of infection for some population groups. As another example, a
partially effective vaccine with potentially harmful side effects might be
developed. Somehow it must be ascertained which persons should be
vaccinated. The model would be used to understand how vaccinating each
group affects the spread of the epidemic.
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